International Journal of Experimental Dental Science

Register      Login

VOLUME 9 , ISSUE 2 ( July-December, 2020 ) > List of Articles


Decoding the Finite Element Method at the Prosthodontic–Periodontal Interface—Elucidating the Biomechanical Behavior of the Periodontium: A Case Review

Sumit Munjal, Seema Munjal

Citation Information : Munjal S, Munjal S. Decoding the Finite Element Method at the Prosthodontic–Periodontal Interface—Elucidating the Biomechanical Behavior of the Periodontium: A Case Review. Int J Experiment Dent Sci 2020; 9 (2):73-76.

DOI: 10.5005/jp-journals-10029-1214

License: CC BY-NC 4.0

Published Online: 01-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Background: The application of finite element method (FEM) is tried to improve our understanding of the distribution of forces in the stomatognathic system. The object to be studied is simulated in computer software to simplify the complex analysis and this approach involves pre-processing, discretization, defining the boundary conditions, loading configuration, and the output is graphically produced from the final data extractions. Aim and objective: This study was undertaken to evaluate the physical form changes of the maxillary central incisor, i.e., the stresses induced within the tooth, periodontal ligament, and alveolar bone due to the normal occlusal force. Case description: Finite element program NISA II DISPLAY III was used for accurate modeling of the tooth-periodontium system, three-dimensionally. Abnormal stress levels may allow the clinician to estimate the tissue damage and implement therapeutic modalities at an appropriate stage. Conclusion: With the present improvization, computer models of various types can be used increasingly for future fundamental biomechanics research in dentistry. Clinical significance: Finite element method is scientific validation used for inspecting the mechanical aspects of biomaterials, tooth and also its supporting structural tissues, as in our study.

  1. Srirekha A, Bashetty K. Infinite to finite: an overview of finite element analysis. Indian J Dent Res 2010;21(3):425–432. DOI: 10.4103/0970-9290.70813.
  2. Grbović A, Mihajlović D. Practical aspects of finite element method applications in dentistry. Balk J Dent Med 2017;21(2):69–77. DOI: 10.1515/bjdm-2017-0011.
  3. Thresher RW, Saito GE. The stress analysis of human teeth. J Biomech 1973;6(5):443–449. DOI: 10.1016/0021-9290(73)90003-1.
  4. Chopade SR, Madhav VV, Palaskar J. Finite element analysis: new dimension in prosthodontic research. J Dent Allied Sci 2014;3(2):85–88. DOI: 10.4103/2277-4696.159089.
  5. Geramy A, Shrafoddin F. Abfraction: 3D analysis by means of the finite element method. Quintessence Int 2003;34(7):526–533.
  6. Khera SC, Goel VK, Chen RCS, et al. A three-dimensional finite element mode. Oper Dent 1988;13:128–137.
  7. Mehta F, Joshi H. Finite element method. an overview. J Dent Med Sci 2016;15(1):38–41. DOI: 10.5455/jrmds.2016418.
  8. Wakabayashi N, Ona M, Suzuki T, et al. Nonlinear finite element analyses: advances and challenges in dental applications. J Dent 2008;36(7):463–471. DOI: 10.1016/j.jdent.2008.03.010.
  9. Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 2003;123(6):657–665. DOI: 10.1016/S0889-5406(03)00164-1.
  10. Williams KR, Edmundson JT. Orthodontic tooth movement analysed by the finite element method. Biomaterials 1984;5(6):347–351. DOI: 10.1016/0142-9612(84)90033-4.
  11. Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005;84(5):428–433. DOI: 10.1177/154405910508400506.
  12. Zarone F, Apicella D, Sorrentino R, et al. Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: a 3D-finite element analysis. Dent Mater 2005;21(12):1178–1188. DOI: 10.1016/
  13. Ausiello P, Rengo S, Davidson CL, et al. Stress distributions in adhesively cemented ceramic and resin-composite class II inlay restorations: a 3D FEA study. Dent Mater 2004;20(9):862–872. DOI: 10.1016/
  14. Gallas MM, Abeleira MT, Fernández JR, et al. Three-dimensional numerical simulation of dental implants as orthodontic anchorage. Eur J Orthod 2005;27(1):12–16. DOI: 10.1093/ejo/cjh066.
  15. Jiang L, Kong L, Li T, et al. Optimal selections of orthodontic mini-implant diameter and length by Biomechanical consideration: a three-dimensional finite element analysis. Adv Engineer Soft 2009;40(11):1124–1130. DOI: 10.1016/j.advengsoft.2009.05.008.
  16. Anitua E, Tapia R, Luzuriaga F, et al. Influence of implant length, diameter and geometry on stress distribution: a finite element analysis. Int J Periodont Restorat Dent 2010;30:89–95.
  17. Farah W, Craig RG, Merouch RG. Finite element analysis of mandibular model. J Oral Rehab 1988;15(6):615–624. DOI: 10.1111/j.1365-2842.1988.tb00199.x.
  18. Taitahashi N, Kitagami T, Komori T. Behavior of tooth under various loading conditions with finite element method. J Oral Rehabil 1980;7(6):453–461. DOI: 10.1111/j.1365-2842.1980.tb00464.x.
  19. Rubin C, Krishnamurthy N, Capilouto E, et al. Stress analysis of the human tooth using a three dimensional finite element method. J Dent Res 1983;62(2):82. DOI: 10.1177/00220345830620021701.
  20. Grippo JO. Abfraction: a new classification of hard tissue lesions of the teeth. J Esth Dent 1991;3(1):14–19. DOI: 10.1111/j.1708-8240.1991.tb00799.x.
  21. Lertchirakaran V, Palamara JEA, Messer HH. Finite element analysis and strain gauge studies of vertical root fracture. J Endod 2003;29(8):529–534. DOI: 10.1097/00004770-200308000-00009.
  22. Moyers RE, Bookstein FL. The inappropriateness of conventional cephalometrics. Am J Orthod 1979;75(6):599–617. DOI: 10.1016/0002-9416(79)90093-9.
  23. Bookstein FL. Foundations of morphometrics. Ann Rev Ecol Syst 1982;13(1):451–470. DOI: 10.1146/
  24. Tanne K, Miyasaka J, Yamagata Y, et al. Three dimensional model of the human craniofacial skeleton: method and preliminary results using finite element analysis. J Biomechl Eng 1988;10(3):246–252. DOI: 10.1016/0141-5425(88)90006-4.
  25. Lee WC. Readers, round table. J Prosthet Dent 1985;53(4):600. DOI: 10.1016/0022-3913(85)90664-X.
  26. Bowen RL, Rodrigues MS. Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc 1962;64(3):378–387. DOI: 10.14219/jada.archive.1962.0090.
  27. Lee WC, Eakle WS. Possible role of tensile stress in the etiology of cervical erosive lesions of teeth. J Prosthet Dent 1984;52(3):374–380. DOI: 10.1016/0022-3913(84)90448-7.
  28. Braem M, Lambrechts P, Vanherle G. Stress-induced cervical lesions. J Prosthet Dent 1992;67(5):718–722. DOI: 10.1016/0022-3913(92)90178-D.
  29. Xhonga FA. Bruxism and its effect on the teeth. J Oral Rehabil I977 4(1):65–76. DOI: 10.1111/j.1365-2842.1977.tb00967.x.
  30. Telles D, Pegoraro LF, Pereira JC. Prevalence of noncarious cervical lesions and their relation to occlusal aspects: a clinical study. J Esthet Dent 2000;12(1):10–15. DOI: 10.1111/j.1708-8240.2000.tb00193.x.
  31. Kaewsuriyathumrong C, Soma K. Stress of tooth and PDL structure created by bite force. Bull Tokyo Med Dent Univ 1993;40:217–232.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.